
Divide and ConquerMethod for Clustering Mixed
Numerical and Categorical Data

Dileep Kumar Murala

Computer Science Engineering Department,
Nalla Malla Reddy Engineering College, Divya Nagar, A.P., India

Abstract-- Clustering is a challenging task in data mining
technique. The aim of clustering is to group the similar data into
number of clusters. Various clustering algorithms have been
developed to group data into clusters. The main aim of cluster
analysis is to assign objects into groups (clusters) in such a way
that two objects from the same cluster are more similar than
two objects from different clusters. Various clustering
algorithms have been developed to group data into clusters in
diverse domains. However, these clustering algorithms work
effectively either on pure numeric data or on pure categorical
data, most of them perform poorly on mixed categorical and
numeric data types. In this paper we cluster the mixed numeric
and categorical data set in efficient manner. In this paper, we
propose a divide-and-conquer technique to solve this problem.
First, the original mixed dataset is divided into two sub-datasets:
the pure categorical dataset and the pure numeric dataset. Next,
existing well established clustering algorithms designed for
different types of datasets are employed to produce
corresponding clusters. Last, the clustering results on the
categorical and numeric dataset are combined as a categorical
dataset, on which the categorical data clustering algorithm is
used to get the final clusters.

Keywords--- clustering, novel divide-and-conquer, mixed
dataset, Numerical data, and categorical data.

I. INTRODUCTION
The applications that can use clustering algorithms belong to
various fields. However, most of these algorithms work with
numerical data or categorical data. Nevertheless, data from
real world contains both numerical and categorical attributes.
In this paper we solve this problem. Clustering is considered
an important tool for data mining. The goal of data clustering
is aimed at dividing the data set into several groups such that
objects have a high degree of similarity to each other in the
same group and have a high degree of dissimilarity to the
ones in different groups. Each formed group is called a
cluster.
In this paper, we propose a novel divide-and-conquer
technique to solve this problem. First, the original mixed
dataset is divided into two sub-datasets: the pure categorical
dataset and the pure numeric dataset. Next, existing well
established clustering algorithms designed for different types
of datasets are employed to produce Corresponding clusters.
Last, the clustering results on the categorical and numeric
dataset are combined as a categorical dataset, on which the
categorical data clustering algorithm is employed to get the
final output.

II. RELATED WORK
A. Methodology
1. Splitting of the given data set into two parts. One for
numerical data and another for categorical data.
2. Applying clustering CHAMELEON algorithms for
numerical data set
3. Applying clustering CACTUS algorithms for categorical
data set
4. Combining the output of step 2 and step 3
5. Clustering the results using CACTUS algorithm

B. Cluster Divide and Conquer Approach for Mixed Data
Dataset with mixed data type are common in real life. Cluster
Divide and Conquer is a method to combine several runs of
different clustering algorithm to get a common partition of
the original dataset. In the paper Divide and Conquer s
technique is formulated. Existing algorithm CHAMELEON
uses a graph partitioning algorithm to cluster the sparse graph
data objects into a large number of relatively small sub
clusters. It then uses an agglomerative hierarchical clustering
algorithm to find the genuine clusters by repeatedly
combining these clusters using the connectivity and closeness
measures. CHAMELEON algorithm has been derived based
on the observation of the weakness of two popular
hierarchical clustering algorithms, CURE and ROCK.CURE
and related schemes ignore information about the aggregate
inter-connectivity of objects in two different clusters, they
measure similarity between two clusters based on the
similarity of the closest pair of the representative points
belonging to different clusters. ROCK and related schemes
ignore information about the closeness of two clusters while
emphasizing their inter-connectivity, they only consider the
aggregate inter-connectivity across the pairs of clusters and
ignores the value of the stronger edges across clusters.
CHAMELEON uses k-nearest neighbor graph approach to
represent its objects Fig 1. This graph captures the concept of
neighborhood dynamically and results in more natural
clusters. The neighborhood is defined narrowly in a dense
region, whereas it is defined more widely in a sparse region.

Fig 1: Overall framework of CHAMELEON Algorithm

Dileep Kumar Murala / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 103 - 106

www.ijcsit.com 103

CHAMELEON determines the similarity between each pair
of clusters Ci and Cj according to their relative inter-
connectivity RI (Ci; Cj), and their relative closeness RC (Ci;
Cj). The relative inter-connectivity RI (Ci; Cj) between two
clusters Ci and Cj is defined as the absolute inter-connectivity
between Ci and Cj, normalized with respect to the internal
inter-connectivity of the two clusters Ci and Cj.

The Edge-Cut, EC{(Ci; Cj)} (from Graph Theory) is defined
to be the sum of the weight of the edges that connect the
vertices in Ci to vertices in Cj. The Min-Cut bisector, EC(Ci)
is the weighted sum of edges that partition the graph into two
roughly equal parts. The relative closeness RC (Ci, Cj)
between a pair of clusters Ci and Cj is the absolute closeness
between Ci and Cj, normalized with respect to the internal
closeness of the two clusters Ci and Cj

S EC (Ci) and S EC (Cj) are the average weights of the edges
that belong in the min-cut bisector of clusters Ci and Cj,
respectively, and S EC {(Ci; Cj)} is the average weight of the
edges that connect vertices in Ci to vertices in Cj.
CHAMELEON’s hierarchical clustering algorithm selects to
merge the pair of clusters for which both RI (Ci, Cj) and RC
(Ci, Cj) are high.

III. METHODOLOGY
The algorithm can be divided into three different parts. The
first part comprises building the k-Nearest Neighbor (k-NN)
Graph from the similarity matrix. The second part consists of
partitioning the graph to find initial sub-clusters, and the third
part relates to merging the partitions using RI and RC values.
A. Input
The input to the first algorithm was a 26 Gene x Gene Matrix
file that contained affinity values [2] (dot products of
keyword relevance using z-score values) between the Genes.
This matrix was read by the first C program to compute the k-
NN Graph from the file. The k value was passed as a
parameter to the program.
B. Converting the matrix into k-NN Graph
After obtaining the matrix, the individual genes were treated
as vertices and the affinity values as the edges between the
vertices. The algorithm computed the k highest affinity
values from the individual genes to store as another graph
consisting of k nearest vertices from each 26 set of genes.
C. Finding initial sub-clusters
CHAMELEON uses a graph partitioning algorithm to find
the initial sub-clusters to partition the k nearest neighbor
graph of the data set into a large number of partitions such

that the edge-cut is minimized. The original algorithm used
the HMetis (Hyper graph Partitioning package) library to
partition the graph. HMetis is a software package for
Partitioning large hyper graphs, especially those arising in
circuit design. These Algorithms are fine-tuned to work on
very large graphs. The 26 Gene set input was not suitable for
hyper graph partitioning using HMetis. Instead, another
software package library called Metis that partitions irregular
graphs
Efficiently using the same edge-cut minimization procedure
was used to partition the k-NN Gene graph. The input to the
Metis library was a formatted graph file containing the k-NN
edges and their weights. Since the program computes the
multilevel k way partitioning of the graph, k value was
provided as input to the program. This k denotes the initial
number of sub clusters that are computed. It should be a value
less than the Expected number of natural clusters which can
be later discovered by the merging part of the algorithm.

The output of the program was as follows:

METIS 4.0.1 Copyright 1998, Regents of the University of
Minnesota
Graph Information ---
Name: metis1.txt, #Vertices: 26, #Edges: 39, #Parts: 6
K-way Partitioning... ---
6-way Edge-Cut: 535, Balance: 1.62
Timing Information ---
-
I/O: 0.000
Partitioning: 0.000 (KMETIS time)
Total: 0.000

3.4. Finding Relative Interconnectivity and Relative
Closeness
In order to find the RI and RC values between different
clusters, the Metis program was used to get the edge-cut of
different clusters efficiently. The min-cut bisector of a cluster
was calculated by adding all the weights of the edges of the
individual cluster. This was done under the assumption that
the vertices of the cluster were all tightly connected to each
other and all of them were needed to be cut to partition the
graph into two roughly equal parts.
3.5. Hierarchical Merging of the clusters
Clusters are merged hierarchically if the RI and RC values
are above some user specified threshold values. These
threshold values control the variability of the clusters and as
such have no absolute values. One can find good threshold by
many experiments for a particular task. For our small Gene
set, the RI threshold was chosen to be 0.1 and RC threshold
was chosen to be 0.3.

IV. CACTUS
Algorithm CACTUS (CAtegorical ClusTering Using
Summaries), is based on the idea of the common occurrences
of certain categories of different variables. If the difference in
the number of occurrences for the categories vkt and vlu of
the k-th and l-th variable, and the expected frequency (on the

Dileep Kumar Murala / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 103 - 106

www.ijcsit.com 104

assumption of uniform distribution in the frame of the certain
categories of the remaining variables, and the assumption of
the independency) is greater than a user-defined threshold,
the categories are strongly connected. The algorithm has
three phases: summarization, clustering and verification.
During clustering, the candidates for clusters are chosen from
which the final clusters are determined in the verification
phase.
A. Summarization Phase
In this section, we describe the summarization phase of
CACTUS. We show how to efficiently compute the
interattribute and the intra-attribute summaries, and then
describe the resource requirements for maintaining these
summaries.
B. Clustering Phase
In this section, we describe the two-step clustering phase of
CACTUS that uses the attribute summaries to compute
candidate clusters in the data. In the first step, we analyze
each attribute to compute all cluster-projections on it. In the
second step, we synthesize, in a level-wise manner, candidate
clusters on sets of attributes from the cluster-projections on
individual attributes. That is, we determine candidate clusters
on a pair of attributes, and then extend the pair to a set of
three attributes, and so on.
C. Validation
We now describe a procedure to compute the set of actual
clusters from the set of candidate clusters. Some of the
candidate clusters may not have enough support because
some of the 2 clusters that combine to form a candidate
cluster may be due to different sets of tuples. To recognize
such false candidates, we check if the support of each
candidate cluster is greater than the required threshold. Only
clusters whose support on D passes the threshold requirement
are retained. After setting the supports of all candidate
clusters to zero, we start scanning the dataset D. For each
tuple t 2 D, we increment the support of the candidate cluster
to which belongs. (Because the set of clusters correspond to
disjoint interval regions, t can belong to at most one cluster.)
At the end of the scan, we delete all candidate clusters whose
support in the dataset D is less than the required threshold:
_times the expected support of the cluster under the attribute
independence assumption.

V. DCMCM ALGORITHM
In this section, we describe the DCMCM (Divide and
Conquer Method for Mixed data) Algorithm framework for
clustering mixed categorical and numeric data. We begin by
presenting overview of the algorithm framework.
A. Overview
The steps involved in DCMCM (Divide and Conquer
Method for Clustering Mixed Data) framework are
described in Fig 2. First, the original mixed dataset is
divided into two sub-datasets: the pure categorical
dataset and the pure numeric dataset. Next, existing
well established clustering algorithms designed for
different types of datasets are employed to produce
corresponding clusters. Finally, the clustering results on

the categorical and numeric dataset are combined as a
categorical dataset, on which the categorical data clustering
algorithm is exploited to get the final clusters.

Fig 2: Overview of DCMCM Algorithm Framework

For this algorithm framework gets clustering output
from both splitting categorical dataset and numeric
dataset, therefore, it is named as DCMCM Algorithm
(Cluster Divide and Conquer Based Mixed Data
Clustering).
B. The Algorithm and Computation Complexity
In this section, we describe the algorithm based on DCMCM
framework (DCMCM) which is described in Fig 3.

Fig 3: DCMCM Algorithm

The computational complexity of the DCMCM Algorithm is
derived in three parts:
1) The complexity for clustering the categorical dataset,
 2) The complexity for clustering the numeric dataset and
3) The complexity for clustering the combined categorical
dataset
C. Scalability with Synthetic Dataset
To handle the running time, experiments were carried out
with synthetic datasets. Since the complexity of the ROCK
algorithm is quadratic with the number of tuples in the
database, it uses sampling large datasets. The scalability of
the algorithm is determined by the sample size, which makes
the comparison on scalability between ROCK and CACTUS

DCMCM Algorithm:

Input: The Dataset D.

Output: Each Data Object Identified.

1. Splitting the Dataset D into Categorical
Dataset (CD) and Numeric Dataset (ND)

2. Clustering CD using Categorical Data
Clustering Algorithm (CACTS)

3. Clustering ND using Numeric Data
Algorithm (CHAMELEON)

4. Combining the outputs of above
Algorithms into a Categorical Dataset
(Combined CD)

5. Clustering Combined CD using CACTS
Algorithm.

Dileep Kumar Murala / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 103 - 106

www.ijcsit.com 105

difficult. However, we believe that, in ROCK, to preserve the
quality of clustering, the sample size must be approximately
set to be large enough according to the database size. With
the increase of sample size, scalability of ROCK will degrade
since it is quadratic with the size of sample. Thus, we
compare CACTUS algorithm with Squeezer algorithm and k-
modes algorithm, both of which have good scalabilities. The
CACTUS algorithm scans the whole dataset twice. In the first
scan summary information is collected and in the second scan
clusters are produced. To make the comparison more
convincing, we implemented the CACTUS in a more
efficient way. In our implementation, in the first scan we only
collected inter-attributes information and in the second scan
nothing but clusters were labeled on the disk. Obviously, this
implementation of CACTUS runs faster than the original one.
For the k-modes algorithm, we set the final number of
clusters to be 2 to make it run faster and save the final results
onto disk. To find out how the number of tuples affects the 4
algorithms, we ran a series of experiments with increasing
numbers of tuples. The datasets were generated using a data
generator, in which all possible values were produced with
(approximately) equal probability. We set the number of
tuples to 1 million; the number of attributes to 10 and the
number of attribute values for each attribute to 10. Due to
sparseness of generated datasets, we set s to 1. Fig shows the
scalability of Squeezer and d-Squeezer, CACTUS, and k-
modes while increasing the number of tuples from 1 to 10
million. When the number of tuples goes up to 3 million, the
Squeezer runs out of memory. See in Fig 4.

Fig 4: comparison graph

The above experimental results demonstrate the scalability of
CACTUS with respect to both the size of dataset and the
number of dimensions.

VI. CONCLUSIONS
In this paper, we propose a DCMCM Algorithm to solve this
problem. First, the original mixed dataset is divided into two
sub datasets: the pure categorical dataset and the pure
numeric dataset. Next, apply CHAMELEON clustering
algorithm on Numerical Dataset and apply CACTUS
clustering algorithm on Categorical Dataset. Finally, the
clustering results on the categorical and numeric dataset are
combined as a categorical dataset, on which the designed for
one type of features to handle numeric and nonnumeric
feature values.
Our main contribution on this paper is to provide an
algorithm framework for the mixed attributes clustering
problem, on which existing clustering algorithms can be
easily integrated, the capabilities of different kinds of
clustering algorithms and characteristics of different types of
datasets could be fully exploited.
In the future work, we will investigate integrating other
alternative clustering algorithms into the algorithm
framework, to get further insight into this methodology.
Moreover, applying the proposed divide-and-conquer
technique for detecting cluster based local outliers m large
database environment with mixed type attributes will be also
addressed.

REFERENCES
[1] Ming-Yi Shih*, Jar-Wen Jheng and Lien-Fu Lai,A Two-Step Method

for Clustering Mixed Categorical and Numeric Data.
[2] 1Srinivasulu Asadi*, 2Ch. D.V. Subba Rao, 3C. Kishore and 4Shreyash

Raju, Clustering the Mixed Numerical and Categorical Datasets Using
Similarity Weight and Filter Method.

[3] Saurav Sahay, Study and Implementation of CHAMELEON [1]
algorithm for Gene Clustering

[4] Venkatesh Ganti_ Johannes Gehrkey Raghu Ramakrishnanz, CACTUS–
Clustering Categorical Data Using Summaries

[5] George Karypis Eui-Hong (Sam) Han Vipin Kumar, CHAMELEON: A
Hierarchical Clustering Algorithm Using Dynamic Modeling.

[6] Zengyou He, Xiaofe i Xu, Shengchun Deng, Clustering Mixed Numeric
and Categorical Data: A Cluster Ensemble Approach*

[7] HE Zengyou, XU Xiaofei and DENG Shengchun, Squeezer: An EÆcient
Algorithm for Clustering Categorical Data

Mr.Dileep Kumar Murala received the M.Tech
degree from the Department of Computer Science
Engineering, Andhra University Engineering
College(A), Vishakhapatnam, in 2011 and received
the B.tech degree from the Department Of
Computer Science Engineering, Gudlavalleru
Engineering College(GEC), JNTUniversity,
Kakinada in 2009, His research interests include
Data Mining and Clustering techniques.

Dileep Kumar Murala / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 103 - 106

www.ijcsit.com 106

