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Abstract-- Clustering is a challenging task in data mining 
technique. The aim of clustering is to group the similar data into 
number of clusters. Various clustering algorithms have been 
developed to group data into clusters. The main aim of cluster 
analysis is to assign objects into groups (clusters) in such a way 
that two objects from the same cluster are more similar than 
two objects from different clusters.  Various clustering 
algorithms have been developed to group data into clusters in 
diverse domains. However, these clustering algorithms work 
effectively either on pure numeric data or on pure categorical 
data, most of them perform poorly on mixed categorical and 
numeric data types.   In this paper we cluster the mixed numeric 
and categorical data set in efficient manner. In this paper, we 
propose a divide-and-conquer technique to solve this problem. 
First, the original mixed dataset is divided into two sub-datasets: 
the pure categorical dataset and the pure numeric dataset. Next, 
existing well established clustering algorithms designed for 
different types of datasets are employed to produce 
corresponding clusters. Last, the clustering results on the 
categorical and numeric dataset are combined as a categorical 
dataset, on which the categorical data clustering algorithm is 
used to get the final clusters. 
 
Keywords--- clustering, novel divide-and-conquer, mixed 
dataset, Numerical data, and categorical data. 
 

I. INTRODUCTION 
The applications that can use clustering algorithms belong to 
various fields. However, most of these algorithms work with 
numerical data or categorical data. Nevertheless, data from 
real world contains both numerical and categorical attributes. 
In this paper we solve this problem. Clustering is considered 
an important tool for data mining. The goal of data clustering 
is aimed at dividing the data set into several groups such that 
objects have a high degree of similarity to each other in the 
same group and have a high degree of dissimilarity to the 
ones in different groups. Each formed group is called a 
cluster. 
In this paper, we propose a novel divide-and-conquer 
technique to solve this problem. First, the original mixed 
dataset is divided into two sub-datasets: the pure categorical 
dataset and the pure numeric dataset. Next, existing well 
established clustering algorithms designed for different types 
of datasets are employed to produce Corresponding clusters. 
Last, the clustering results on the categorical and numeric 
dataset are combined as a categorical dataset, on which the 
categorical data clustering algorithm is employed to get the 
final output. 
 

II. RELATED WORK 
A.  Methodology 
1. Splitting of the given data set into two parts.    One for 
numerical data and another for categorical data.  
2. Applying clustering CHAMELEON algorithms for 
numerical data set 
3. Applying clustering CACTUS algorithms for categorical 
data set  
4. Combining the output of step 2 and step 3   
5. Clustering the results using CACTUS algorithm 
 
B. Cluster Divide and Conquer Approach for Mixed Data  
Dataset with mixed data type are common in real life. Cluster 
Divide and Conquer   is a method to combine several runs of 
different clustering algorithm to get a common partition of 
the original dataset. In the paper Divide and Conquer s 
technique is formulated. Existing algorithm CHAMELEON 
uses a graph partitioning algorithm to cluster the sparse graph 
data objects into a large number of relatively small sub 
clusters. It then uses an agglomerative hierarchical clustering 
algorithm to find the genuine clusters by repeatedly 
combining these clusters using the connectivity and closeness 
measures. CHAMELEON algorithm has been derived based 
on the observation of the weakness of two popular 
hierarchical clustering algorithms, CURE and ROCK.CURE 
and related schemes ignore information about the aggregate 
inter-connectivity of objects in two different clusters, they 
measure similarity between two clusters based on the 
similarity of the closest pair of the representative points 
belonging to different clusters. ROCK and related schemes 
ignore information about the closeness of two clusters while 
emphasizing their inter-connectivity, they only consider the 
aggregate inter-connectivity across the pairs of clusters and 
ignores the value of the stronger edges across clusters. 
CHAMELEON uses k-nearest neighbor graph approach to 
represent its objects Fig 1. This graph captures the concept of 
neighborhood dynamically and results in more natural 
clusters. The neighborhood is defined narrowly in a dense 
region, whereas it is defined more widely in a sparse region. 

Fig 1: Overall framework of CHAMELEON Algorithm 
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CHAMELEON determines the similarity between each pair 
of clusters Ci and Cj according to their relative inter-
connectivity RI (Ci; Cj), and their relative closeness RC (Ci; 
Cj). The relative inter-connectivity RI (Ci; Cj) between two 
clusters Ci and Cj is defined as the absolute inter-connectivity 
between Ci and Cj, normalized with respect to the internal 
inter-connectivity of the two clusters Ci and Cj. 
 
 
 
 
 
 
The Edge-Cut, EC{(Ci; Cj)} (from Graph Theory) is defined 
to be the sum of the weight of the edges that connect the 
vertices in Ci to vertices in Cj. The Min-Cut bisector, EC(Ci) 
is the weighted sum of edges that partition the graph into two 
roughly equal parts. The relative closeness RC (Ci, Cj) 
between a pair of clusters Ci and Cj is the absolute closeness 
between Ci and Cj, normalized with respect to the internal 
closeness of the two clusters Ci and Cj 
 

 
S EC (Ci) and S EC (Cj) are the average weights of the edges 
that belong in the min-cut bisector of clusters Ci and Cj, 
respectively, and S EC {(Ci; Cj)} is the average weight of the 
edges that connect vertices in Ci to vertices in Cj. 
CHAMELEON’s hierarchical clustering algorithm selects to 
merge the pair of clusters for which both RI (Ci, Cj) and RC 
(Ci, Cj) are high. 
    

III. METHODOLOGY 
The algorithm can be divided into three different parts. The 
first part comprises building the k-Nearest Neighbor (k-NN) 
Graph from the similarity matrix. The second part consists of 
partitioning the graph to find initial sub-clusters, and the third 
part relates to merging the partitions using RI and RC values. 
A.  Input 
The input to the first algorithm was a 26 Gene x Gene Matrix 
file that contained affinity values [2] (dot products of 
keyword relevance using z-score values) between the Genes. 
This matrix was read by the first C program to compute the k-
NN Graph from the file. The k value was passed as a 
parameter to the program. 
B.  Converting the matrix into k-NN Graph 
After obtaining the matrix, the individual genes were treated 
as vertices and the affinity values as the edges between the 
vertices. The algorithm computed the k highest affinity 
values from the individual genes to store as another graph 
consisting of k nearest vertices from each 26 set of genes. 
C.  Finding initial sub-clusters 
CHAMELEON uses a graph partitioning algorithm to find 
the initial sub-clusters to partition the k nearest neighbor 
graph of the data set into a large number of partitions such 

that the edge-cut is minimized. The original algorithm used 
the HMetis (Hyper graph Partitioning package) library to 
partition the graph. HMetis is a software package for 
Partitioning large hyper graphs, especially those arising in 
circuit design. These Algorithms are fine-tuned to work on 
very large graphs. The 26 Gene set input was not suitable for 
hyper graph partitioning using HMetis. Instead, another 
software package library called Metis that partitions irregular 
graphs 
Efficiently using the same edge-cut minimization procedure 
was used to partition the k-NN Gene graph. The input to the 
Metis library was a formatted graph file containing the k-NN 
edges and their weights. Since the program computes the 
multilevel k way partitioning of the graph, k value was 
provided as input to the program. This k denotes the initial 
number of sub clusters that are computed. It should be a value 
less than the Expected number of natural clusters which can 
be later discovered by the merging part of the algorithm.  

The output of the program was as follows: 
*************************************************
METIS 4.0.1 Copyright 1998, Regents of the University of 
Minnesota 
Graph Information --------------------------------------------------- 
Name: metis1.txt, #Vertices: 26, #Edges: 39, #Parts: 6 
K-way Partitioning... ----------------------------------------------- 
6-way Edge-Cut: 535, Balance: 1.62 
Timing Information -------------------------------------------------
- 
I/O: 0.000 
Partitioning: 0.000 (KMETIS time) 
Total: 0.000 
************************************************* 
3.4. Finding Relative Interconnectivity and Relative 
Closeness 
In order to find the RI and RC values between different 
clusters, the Metis program was used to get the edge-cut of 
different clusters efficiently. The min-cut bisector of a cluster 
was calculated by adding all the weights of the edges of the 
individual cluster. This was done under the assumption that 
the vertices of the cluster were all tightly connected to each 
other and all of them were needed to be cut to partition the 
graph into two roughly equal parts. 
3.5. Hierarchical Merging of the clusters 
Clusters are merged hierarchically if the RI and RC values 
are above some user specified threshold values. These 
threshold values control the variability of the clusters and as 
such have no absolute values. One can find good threshold by 
many experiments for a particular task. For our small Gene 
set, the RI threshold was chosen to be 0.1 and RC threshold 
was chosen to be 0.3. 
 

IV. CACTUS 
Algorithm CACTUS (CAtegorical ClusTering Using 
Summaries), is based on the idea of the common occurrences 
of certain categories of different variables. If the difference in 
the number of occurrences for the categories vkt and vlu of 
the k-th and l-th variable, and the expected frequency (on the 
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assumption of uniform distribution in the frame of the certain 
categories of the remaining variables, and the assumption of 
the independency) is greater than a user-defined threshold, 
the categories are strongly connected. The algorithm has 
three phases: summarization, clustering and verification. 
During clustering, the candidates for clusters are chosen from 
which the final clusters are determined in the verification 
phase.   
A. Summarization Phase 
In this section, we describe the summarization phase of 
CACTUS. We show how to efficiently compute the 
interattribute and the intra-attribute summaries, and then 
describe the resource requirements for maintaining these 
summaries. 
B. Clustering Phase 
In this section, we describe the two-step clustering phase of 
CACTUS that uses the attribute summaries to compute 
candidate clusters in the data. In the first step, we analyze 
each attribute to compute all cluster-projections on it. In the 
second step, we synthesize, in a level-wise manner, candidate 
clusters on sets of attributes from the cluster-projections on 
individual attributes. That is, we determine candidate clusters 
on a pair of attributes, and then extend the pair to a set of 
three attributes, and so on. 
C. Validation 
We now describe a procedure to compute the set of actual 
clusters from the set of candidate clusters. Some of the 
candidate clusters may not have enough support because 
some of the 2 clusters that combine to form a candidate 
cluster may be due to different sets of tuples. To recognize 
such false candidates, we check if the support of each 
candidate cluster is greater than the required threshold. Only 
clusters whose support on D passes the threshold requirement 
are retained. After setting the supports of all candidate 
clusters to zero, we start scanning the dataset D. For each 
tuple t 2 D, we increment the support of the candidate cluster 
to which belongs. (Because the set of clusters correspond to 
disjoint interval regions, t can belong to at most one cluster.) 
At the end of the scan, we delete all candidate clusters whose 
support in the dataset D is less than the required threshold: 
_times the expected support of the cluster under the attribute 
independence assumption. 
 

V. DCMCM ALGORITHM 
In this section, we describe the DCMCM (Divide and 
Conquer    Method for Mixed data) Algorithm framework for 
clustering mixed categorical and numeric data. We begin by 
presenting overview of the algorithm framework. 
A. Overview 
The steps involved in DCMCM (Divide and Conquer 
Method for Clustering Mixed Data) framework are 
described in Fig 2. First, the original mixed dataset is 
divided into two sub-datasets: the pure categorical 
dataset and the pure numeric dataset. Next, existing 
well established clustering algorithms designed for 
different types of datasets are employed to produce 
corresponding clusters. Finally, the clustering results on 

the categorical and numeric dataset are combined as a 
categorical dataset, on which the categorical data clustering 
algorithm is exploited to get the final clusters. 

 
Fig  2: Overview of DCMCM Algorithm Framework 

 
For this algorithm framework gets clustering output 
from both splitting categorical dataset and numeric 
dataset, therefore, it is named as DCMCM Algorithm 
(Cluster Divide and Conquer Based Mixed Data 
Clustering). 
B. The Algorithm and Computation Complexity 
In this section, we describe the algorithm based on DCMCM 
framework (DCMCM) which is described in Fig 3.  

 
Fig 3: DCMCM Algorithm 

 
The computational complexity of the DCMCM Algorithm is 
derived in three parts:  
1) The complexity for clustering the categorical dataset, 
 2) The complexity for clustering the numeric dataset and  
3) The complexity for clustering the combined categorical 
dataset 
C. Scalability with Synthetic Dataset 
To handle the running time, experiments were carried out 
with synthetic datasets. Since the complexity of the ROCK 
algorithm is quadratic with the number of tuples in the 
database, it uses sampling large datasets. The scalability of 
the algorithm is determined by the sample size, which makes 
the comparison on scalability between ROCK and CACTUS 

DCMCM Algorithm: 

Input:   The Dataset D. 

Output: Each Data Object Identified. 

1. Splitting the Dataset D into Categorical 
Dataset (CD) and Numeric Dataset (ND) 

2. Clustering CD using Categorical Data 
Clustering Algorithm (CACTS) 

3. Clustering ND using Numeric Data 
Algorithm (CHAMELEON) 

4. Combining the outputs of above 
Algorithms into a Categorical Dataset 
(Combined CD) 

5. Clustering Combined CD using CACTS 
Algorithm. 
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difficult. However, we believe that, in ROCK, to preserve the 
quality of clustering, the sample size must be approximately 
set to be large enough according to the database size. With 
the increase of sample size, scalability of ROCK will degrade 
since it is quadratic with the size of sample. Thus, we 
compare CACTUS algorithm with Squeezer algorithm and k-
modes algorithm, both of which have good scalabilities. The 
CACTUS algorithm scans the whole dataset twice. In the first 
scan summary information is collected and in the second scan 
clusters are produced. To make the comparison more 
convincing, we implemented the CACTUS in a more 
efficient way. In our implementation, in the first scan we only 
collected inter-attributes information and in the second scan 
nothing but clusters were labeled on the disk. Obviously, this 
implementation of CACTUS runs faster than the original one. 
For the k-modes algorithm, we set the final number of 
clusters to be 2 to make it run faster and save the final results 
onto disk. To find out how the number of tuples affects the 4 
algorithms, we ran a series of experiments with increasing 
numbers of tuples. The datasets were generated using a data 
generator, in which all possible values were produced with 
(approximately) equal probability. We set the number of 
tuples to 1 million; the number of attributes to 10 and the 
number of attribute values for each attribute to 10. Due to 
sparseness of generated datasets, we set s to 1. Fig shows the 
scalability of Squeezer and d-Squeezer, CACTUS, and k-
modes while increasing the number of tuples from 1 to 10 
million. When the number of tuples goes up to 3 million, the 
Squeezer runs out of memory. See in Fig 4. 
 
 

 
Fig 4: comparison graph 

 
The above experimental results demonstrate the scalability of 
CACTUS with respect to both the size of dataset and the 
number of dimensions. 
 

VI. CONCLUSIONS 
In this paper, we propose a DCMCM Algorithm to solve this 
problem. First, the original mixed dataset is divided into two 
sub datasets: the pure categorical dataset and the pure 
numeric dataset. Next, apply CHAMELEON clustering 
algorithm on Numerical Dataset and apply CACTUS 
clustering algorithm on Categorical Dataset. Finally, the 
clustering results on the categorical and numeric dataset are 
combined as a categorical dataset, on which the designed for 
one type of features to handle numeric and nonnumeric 
feature values. 
Our main contribution on this paper is to provide an 
algorithm framework for the mixed attributes clustering 
problem, on which existing clustering algorithms can be 
easily integrated, the capabilities of different kinds of 
clustering algorithms and characteristics of different types of 
datasets could be fully exploited. 
In the future work, we will investigate integrating other 
alternative clustering algorithms into the algorithm 
framework, to get further insight into this methodology. 
Moreover, applying the proposed divide-and-conquer 
technique for detecting cluster based local outliers m large 
database environment with mixed type attributes will be also 
addressed. 
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